
Lecture 2
The Wess-Zumino Model



Outline
• Review: two component spinors.

• The simplest SUSY Lagrangian: the free Wess-Zumino model.

• The SUSY algebra and the off-shell formalism.

• Noether theorem for SUSY: the supercurrent.

• Interactions in the WZ-model: the superpotential.

Reading: Terning 2.1-2.4, A.1-2



Two component spinors
The massless Dirac Lagrangian, in four-component and two-component
forms:

L = iψγµ∂µψ = iψ†Lσ
µ∂µψL + iψ†Rσ

µ∂µψR

with

γµ =
(

0 σµ

σµ 0

)
, ψ =

(
ψL
ψR

)
, ψ = ψ†γ0 =

(
ψ†R ψ†L

)
Convention: focus on the L-component. In other words: the index “L”
is always implied.



Aside: Lorentz-transformations
Under Lorentz transformation (with rotation angles ~θ and boost param-
eters ~β), the “L” and “R” helicities do not mix:

ψL → (1− i~θ · ~σ2 − ~β · ~σ2 )ψL
ψR → (1− i~θ · ~σ2 + ~β · ~σ2 )ψR

A simple Lorentz invariant (the Majorana mass term):

χTL(−iσ2)ψL = −χαεαβψβ = χβψβ = χψ

Check: the transposed spinor transforms as

ψTL → ψTL (1− i~θ · ~σ
T

2 − ~β · ~σ
T

2 ) = ψTLσ2(1 + i~θ · ~σ2 + ~β · ~σ2 )σ2

Notation:

ψα = εαβψ
β , ψα = εαβψβ

εαβ = −iσ2 =
(

0 −1
1 0

)
, εαβ = iσ2 =

(
0 1
−1 0

)



Signs: careful with ordering of indices, ordering of fermions, upper/lower
indices...

Sample manipulation:

χψ = χαψα = χαεαβψ
β = −εαβψβχα = ψβεβαχ

α = ψχ

The complex conjugate of the “L”-spinor transforms like ψR:

σ2ψ
∗
L → σ2(1 + i~θ · ~σ

∗

2 − ~β · ~σ
∗

2 )ψ∗L = (1− i~θ · ~σ2 + ~β · ~σ2 )σ2ψ
∗
L

Example: since χ†R ∼ ψTLσ2 (as far as Lorentz is concerned), the Majo-
rana mass term (above) is equivalent to

χ†RψL = χαψα

Conjugate spinors have dotted indices with “SW to NE” contraction

ψ†LχR = ψα̇χ
α̇



The Pauli matrices have transformation properties according to the index
structure

σµαα̇ , σµα̇α

Example: a Lorentz-vector is formed from two-component spinors by the
combination:

χ†σµψ = χ†α̇σ
µα̇αψα



The free Wess–Zumino model
The simplest representation of the superalgebra: the massless chiral su-
permultiplet.

Particle content: a massless complex scalar field and a massless two
component fermion (a Weyl fermion).

Goal: present a field theory with this particle content, and show that it
realizes the superalgebra.

Proposal:

S =
∫
d4x (Ls + Lf)

where

Ls = ∂µφ∗∂µφ , Lf = iψ†σµ∂µψ.

Convention for spacetime metric:

gµν = ηµν = diag(1,−1,−1,−1)



The SUSY transformation
Generic infinitesimal symmetry transformation

φ→ φ+ δφ
ψ → ψ + δψ

SUSY changes bosons into fermions so we consider the transformation

δφ = εαψα = εψ

Remarks:

• εα is an infinitesimal parameter with spinorial indices.

• Mass dimensions: dim(φ) = 1, dim(ψ) = 3
2 ⇒ dim(ε) = − 1

2 .

SUSY changes fermions into bosons. Since the SUSY transformation
parameter εα has dimension (− 1

2 ), the transformation must include a
derivative (recall dim(∂) = 1). Lorentz invariance determines the form
as

δψα = −i(σνε†)α ∂νφ



SUSY of free WZ-model
The variation of the scalar Lagrangian under δφ = εψ:

δLs = ∂µδφ∂µφ
∗ + ∂µφ∂µδφ

∗ = ε∂µψ ∂µφ
∗ + ε†∂µψ† ∂µφ

The variation of the fermion Lagrangian under

δψα = −i(σνε†)α ∂νφ , δψ†α̇ = i(εσν)α̇ ∂νφ∗

gives

δLf = iδψ†σµ∂µψ + iψ†σµ∂µδψ
= −εσν∂νφ∗σµ∂µψ + ψ†σµσνε† ∂µ∂νφ
= −ε∂µψ ∂µφ∗ − ε†∂µψ† ∂µφ

+∂µ
(
εσµσνψ ∂νφ

∗ − εψ ∂µφ∗ + ε†ψ† ∂µφ
)
.

The sum of the two variations is a total derivative so the action is in-
variant:

δS = 0



Remark: in the manipulations we needed the Pauli identities:[
σµσν + σνσµ

]β
α

= 2ηµνδβα[
σµσν + σνσµ

]β̇
α̇

= 2ηµνδβ̇α̇

These are the two component versions of the Dirac algebra

{γµ, γν} = 2ηµν



SUSY Commutators
Consistency: the commutator of two SUSY transformations must itself
be a symmetry transformation. We need to show that it is in fact a
translation, as the SUSY algebra indicates.

The commutator, acting on the complex scalar:

(δε2δε1 − δε1δε2)φ = −i(ε1σµε†2 − ε2σµε
†
1) ∂µφ

The commutator, acting on the fermion:

(δε2δε1 − δε1δε2)ψα = −i(σνε†1)α ε2∂νψ + i(σνε†2)α ε1∂νψ
= −i(ε1σµε†2 − ε2σµε

†
1) ∂µψα

+i(ε1α ε
†
2σ
µ∂µψ − ε2α ε†1σµ∂µψ).

(Reorganized using the Fierz identity: χα (ξη) = −ξα (χη)− (ξχ)ηα )

The last term vanishes upon imposing the fermion equation of motion.
With this caveat, the commutator is a translation, with details the same
for the two fields. Thus the SUSY algebra closes on-shell.



Counting Degrees of Freedom
The fermion e.o.m. projects out half of the degrees of freedom:

σµpµψ =
(

0 0
0 2p

)(
ψ1

ψ2

)
, pµ = (p, 0, 0, p)

Counting degrees of freedom shows that SUSY is not manifest off-shell:

off-shell on-shell
φ, φ∗ 2 d.o.f. 2 d.o.f.

ψα, ψ
†
α̇ 4 d.o.f. 2 d.o.f.

Restore SUSY off-shell: add an auxiliary boson field F with Lagrangian

Laux = F∗F

Recount degrees of freedom

off-shell on-shell
F ,F∗ 2 d.o.f. 0 d.o.f.



Maintain SUSY off-shell: transform the auxiliary field, and modify the
transformation of the fermion

δF = −iε†σµ∂µψ , δF∗ = i∂µψ
†σµε

δψα = −i(σνε†)α ∂νφ+ εαF , δψ†α̇ = +i(εσν)α̇ ∂νφ∗ + ε†α̇F∗

Transformation of the Lagrangian:

δLaux = i∂µψ
†σµε F − iε†σµ∂µψ F∗

δnewLf = δoldLf + iε†σµ∂µψF∗ + iψ†σµ∂µ(εF)
= δoldLf + iε†σµ∂µψF∗ − i(∂µψ†)σµεF + ∂µ(iψ†σµεF)

The last term is a total derivative so the action

Snew =
∫
d4x Lfree =

∫
d4x (Ls + Lf + Laux)

is invariant under SUSY transformations:

δSnew = 0



Off-shell SUSY commutator
The previous computation, without using e.o.m.

(δε2δε1 − δε1δε2)ψα = −i(ε1σµε†2 − ε2σµε
†
1) ∂µψα

+i(ε1α ε
†
2σ
µ∂µψ − ε2α ε†1σµ∂µψ)

+δε2ε1αF − δε1ε2αF
= −i(ε1σµε†2 − ε2σµε

†
1) ∂µψα

The point: the additional term in the SUSY transformation of the
fermion, the depending on the auxiliary field, is precisely such that the
last two lines cancel.

Conclusion: the SUSY algebra closes for off-shell fermions.



Off-shell SUSY commutator II
Issue: the commutator of SUSY transformations must also close when
acting on the auxiliary field.

Computation:

(δε2δε1 − δε1δε2)F = δε2(−iε†1σµ∂µψ)− δε1(−iε†2σµ∂µψ)
= −iε†1σµ∂µ(−iσνε†2 ∂νφ+ ε2F)

+iε†2σ
µ∂µ(−iσνε†1 ∂νφ+ ε1F)

= −i(ε1σµε†2 − ε2σµε
†
1) ∂µF

−ε†1σµσνε
†
2 ∂µ∂νφ+ ε†2σ

µσνε†1 ∂µ∂νφ

= −i(ε1σµε†2 − ε2σµε
†
1) ∂µF

Conclusion: the SUSY algebra closes

(δε2δε1 − δε1δε2)X = −i(ε1σµε†2 − ε2σµε
†
1) ∂µX

for all the fields in the off-shell supermultiplet

X = φ, φ∗, ψ, ψ†,F ,F∗



Noether’s Theorem
Noether’s theorem: corresponding to every continuous symmetry, there
is a conserved current.

An infinitesimal transformation X → X + δX of the field X that leaves
the action invariant, transforms the Lagrangian to a total derivative:

δL = L(X + δX)− L(X) = ∂µV
µ

Identification of conserved current:

∂µV
µ = δL = ∂L

∂X δX +
(

∂L
∂(∂µX)

)
δ(∂µX)

= ∂µ

(
∂L

∂(∂µX)δX
)

⇒ ε∂µJ
µ = ∂µ

(
∂L

∂(∂µX)δX − V
µ
)

= 0

Ingredient: the equation of motion

∂µ

(
∂L

∂(∂µX)

)
= ∂L

∂X



The Supercurrent
The conserved supercurrent, Jµα :

εJµ + ε†J†µ = ∂L
∂(∂µX) δX − V

µ

= δφ∂µφ∗ + δφ∗∂µφ+ iψ†σµδψ − V µ
= εψ∂µφ∗ + ε†ψ†∂µφ+ iψ†σµ(−iσνε† ∂νφ+ εF)
−εσµσνψ ∂νφ∗ + εψ ∂µφ∗ − ε†ψ† ∂µφ− iψ†σµεF

= 2εψ∂µφ∗ − εσµσνψ ∂νφ∗ + ψ†σµσνε† ∂νφ
= εσνσµψ ∂νφ

∗ + ψ†σµσνε† ∂νφ

Results for the supercurrents:

Jµα = (σνσµψ)α ∂νφ∗ , J†µα̇ = (ψ†σµσν)α̇ ∂νφ.



The Supercharges
The Noether charge generate the transformations of the corresponding
symmetry (see e.g. PS 9.97 for signs and normalization).

The conserved supercharges:

Qα =
√

2
∫
d3xJ0

α , Q†α̇ =
√

2
∫
d3xJ†0α̇

generate SUSY transformations when acting on any (string of) fields:[
εQ+ ε†Q†, X

]
= −i

√
2 δX

Commutators of the supercharges acting on fields give:

[
ε2Q+ ε†2Q

†,
[
ε1Q+ ε†1Q

†, X
]]
−
[
ε1Q+ ε†1Q

†,
[
ε2Q+ ε†2Q

†, X
]]

= 2(δε2δε1 − δε1δε2)X = 2(ε2σµε
†
1 − ε1σµε

†
2) i∂µX



Reorganize (using the Jacobi identity) and identify i∂µ = Pµ[[
ε2Q+ ε†2Q

†, ε1Q+ ε†1Q
†], X] = 2(ε2σµε

†
1 − ε1σµε

†
2) [Pµ, X]

This is an operator equation, since X is arbitrary[
ε2Q+ ε†2Q

†, ε1Q+ ε†1Q
†] = 2(ε2σµε

†
1 − ε1σµε

†
2)Pµ

Since ε1 and ε2 are arbitrary:[
ε2Q, ε

†
1Q
†] = 2ε2σµε

†
1Pµ[

ε2Q, ε1Q
]

=
[
ε†2Q

†, ε†1Q
†] = 0

Extracting the arbitrary ε1 and ε2:

{Qα, Q†α̇} = 2σµαα̇Pµ
{Qα, Qβ} = {Q†α̇, Q

†
β̇
} = 0

This is precisely the SUSY algebra, which is thus realized by the free
WZ-model.



The interacting Wess–Zumino model
So far, we considered the free Wess-Zumino model for a single chiral field.

Lagrangian for multicomponent generalization

Lfree = ∂µφ∗j∂µφj + iψ†jσµ∂µψj + F∗jFj
Offshell SUSY transformations for multicomponent model

δφj = εψj δφ∗j = ε†ψ†j

δψjα = −i(σµε†)α ∂µφj + εαFj δψ†jα̇ = i(εσµ)α̇ ∂µφ∗j + ε†α̇F∗j
δFj = −iε†σµ∂µψj δF∗j = i∂µψ

†jσµε

Next: introduce interactions, while preserving SUSY.

Guiding principle: the off-shell SUSY transformations are independent
of interactions.

Interpretation: the SUSY transformations is the realization of the al-
gebra (the same for all interactions), while the interactions specify the
e.o.m.’s (not needed at the level of off-shell algebra).



The most general set of renormalizable interactions:

Lint = − 1
2W

jkψjψk +W jFj + h.c.,

with Wjk linear in φi, φ
∗
i and W j quadratic in φi, φ

∗
i .

Recall: ψjψk = ψαj εαβψ
β
k is symmetric under j ↔ k. So W jk is symmet-

ric under j ↔ k (without loss of generality).

Remark: a potential U(φj , φ∗j) would break SUSY, since a SUSY trans-
formation gives

δU = ∂U
∂φj

εψj + ∂U
∂φ∗j ε

†ψ†j

which is linear in ψj and ψ†j with no derivatives or F dependence. Such
terms cannot be canceled by any other term in δLint.



SUSY Conditions
First focus on variations of Lint with four spinors:

δLint|4−spinor = − 1
2
∂W jk

∂φn
(εψn)(ψjψk)− 1

2
∂W jk

∂φ∗n (ε†ψ†n)(ψjψk) + h.c.

The vanishing of the second term requires that W jk is analytic (a.k.a.
holomorphic):

∂W jk

∂φ∗n = 0

The Fierz identity

(εψj)(ψkψn) + (εψk)(ψnψj) + (εψn)(ψjψk) = 0

so the first term vanishes exactly when ∂W jk/∂φn is totally symmetric
under the interchange of j, k, n.

This condition amounts to the existence of a superpotential W such that:

W jk = ∂2

∂φj∂φk
W



Next, the terms in the SUSY variation with derivatives of the fields:

δLint|∂ = −iW jk∂µφk ψjσ
µε† − iW j ∂µψjσ

µε† + h.c.

= −i∂µ
(
∂W
∂φj

)
ψjσ

µε† − iW j ∂µψjσ
µε† + h.c.

This term is a total derivative exactly if

W j = ∂W
∂φj

All the remaining terms in the SUSY variation depend on the auxiliary
field:

δLint|F,F∗ = −W jkFjεψk + ∂W j

∂φk
εψkFj

These cancel automatically, if the previous conditions are satisfied.

Summary: the interaction term

Lint = − 1
2
∂2W
∂φi∂j

ψiψj + ∂W
∂φi
Fi + h.c.

transforms into a total derivative, for any holomorphic superpotential
W .



Remark on Renormalizability
The original ansatz for Lint was motivated by renormalizability.

Yet, the computation establishing SUSY did not rely on the functional
form of W (other than it must be holomorphic).

For renormalizable interactions

W (φ) = Eiφi + 1
2M

ijφiφj + 1
6y
ijkφiφjφk

where M ij , yijk are are symmetric under interchange of indices.

Often we additionally take Ei = 0 so SUSY is unbroken in the minimum
φi = 0.



Integrate out auxillary fields
The action is quadratic in the auxiliary field F and there are no deriva-
tives:

LF = FjF∗j +W jFj +W ∗j F∗j

The path integral can be performed exactly, by solving its algebraic
equation of motion:

Fj = −W ∗j , F∗j = −W j

Insert in L:

L = ∂µφ∗j∂µφj + iψ†jσµ∂µψj
− 1

2

(
W jkψjψk +W ∗jkψ†jψ†k

)
−W jW ∗j

Remark: the off-shell SUSY transformation of the fermions ψi depended
on the auxiliary fields Fi so, after these are integrated out, it depends
on the choice of superpotential W .



WZ Lagrangian
The interacting Wess–Zumino model (with renormalizable superpoten-
tial):

LWZ = ∂µφ∗j∂µφj + iψ†jσµ∂µψj − 1
2M

jkψjψk − 1
2M

∗
jkψ
†jψ†k

− 1
2y
jknφjψkψn − 1

2y
∗
jknφ

∗jψ†kψ†n − V (φ, φ∗)

The scalar potential:

V (φ, φ∗) = W jW ∗j = FjF∗j = M∗jnM
nkφ∗jφk

+ 1
2M

jmy∗knmφjφ
∗kφ∗n + 1

2M
∗
jmy

knmφ∗jφkφn + 1
4y
jkmy∗npmφjφkφ

∗nφ∗p



Features:

• The scalar potential

V (φ, φ∗) = FjF∗j ≥ 0

as required by SUSY.

• The quartic coupling is |y|2, as required to cancel the Λ2 divergence
in the φ-mass.

• The |cubic coupling|2 ∝ quartic coupling ×|M |2 as required to
cancel the log Λ divergence.



Linearized equations of motion
Equations of motion, keeping just the quadratic term in the superpoten-
tial:

∂µ∂µφj = −M∗jnMnkφk + . . . ;
iσµ∂µψj = M∗jkψ

†k + . . . ;
iσµ∂µψ

†j = M jkψk + . . .

Multiplying fermion equations by iσν∂ν and iσν∂ν , and using the Pauli
identity, we obtain

∂µ∂µψj = −M∗jnMnkψk + . . . ;
∂µ∂µψ

†k = −ψ†jM∗jnMnk + . . .

Conclusion: scalars and fermions have the same mass eigenvalues, as
required by SUSY.

Diagonalizing the mass matrix gives a collection of massive chiral super-
multiplets.


