Lecture 2
The Wess-Zumino Model



Outline

e Review: two component spinors.

e The simplest SUSY Lagrangian: the free Wess-Zumino model.
e The SUSY algebra and the off-shell formalism.

e Noether theorem for SUSY: the supercurrent.

e Interactions in the WZ-model: the superpotential.

Reading: Terning 2.1-2.4, A.1-2



T'wo component spinors

The massless Dirac Lagrangian, in four-component and two-component
forms:

L= @EVMC(?MD = i@bTLEuaqu + i@b}éauaﬁﬂbg
with
v % ) e=(0E) . Tevh =k wl)

Convention: focus on the L-component. In other words: the index “L”
is always implied.



Aside: Lorentz-transformations

Under Lorentz transformation (with rotation angles § and boost param-

eters E), the “L” and “R” helicities do not mix:

wL — (1—7,5
wR — (1—267
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A simple Lorentz invariant (the Majorana mass term):

XE(—ioa)r, = —Xac*Pbg = X5 = xt

Check: the transposed spinor transforms as

OF = P0G — - 5) =dfoa(l+if - § + 5 §)o
Notation:
o = eap?, P =Py
€ag = —iaQ—((i) _01> : eO‘B:icfQ:(_Ol (1)>



Signs: careful with ordering of indices, ordering of fermions, upper /lower

indices...
Sample manipulation:
XU = X%Pa = X%€aph’ = —€apP X = VPegax® = VX

The complex conjugate of the “L”-spinor transforms like ¥ pg:
o — oa(1+if G =5 ) = (1 —if - §+ 5 §)oan]
~ ¥ oy (as far as Lorentz is concerned), the Majo-

.‘.
R

Example: since y

rana mass term (above) is equivalent to
XR¥L = X*a

Conjugate spinors have dotted indices with “SW to NE” contraction

QPEXR = %xd



The Pauli matrices have transformation properties according to the index
structure

K —pao
Jad , o)

Example: a Lorentz-vector is formed from two-component spinors by the
combination:

xtary = xLaraaqy,



The free Wess—Zumino model

The simplest representation of the superalgebra: the massless chiral su-
permultiplet.

Particle content: a massless complex scalar field and a massless two
component fermion (a Weyl fermion).

Goal: present a field theory with this particle content, and show that it
realizes the superalgebra.

Proposal:
S = [d*z (Ls+ Ls)
where

L= 00" 0,0, Lp=itaro .

Convention for spacetime metric:

g,uz/ — 77”1/ — dlag(lv _17 _17 _1)



The SUSY transtformation

Generic infinitesimal symmetry transformation

¢ — ¢+ 09
Y=Y+ 0y

SUSY changes bosons into fermions so we consider the transformation
09 = €“tho = et
Remarks:

e ¢“ is an infinitesimal parameter with spinorial indices.
e Mass dimensions: dim(¢) =1, dim(¢)) = 2 = dim(e) = —3.

SUSY changes fermions into bosons. Since the SUSY transformation
parameter €* has dimension (—%), the transformation must include a
derivative (recall dim(0Q) = 1). Lorentz invariance determines the form
as

0o = —i(0V€e ) o O, ¢



SUSY of free WZ-model

The variation of the scalar Lagrangian under d¢ = e:
6Ls = OM5pD,¢* + OH PO, 0™ = €dH) 0,¢* + T O*YT 0,0
The variation of the fermion Lagrangian under

6o = —i(0V€ o 0,0 | &pl = i(ea")g O, 0*

gives

0Ly

161 EH 0,0 + iptEra), o

—ea¥ 0, ¢* T 0, + wigta’el 0,0,¢
—eOtah O, % — €T OHYT O, ¢

+0, (ectT 1 B,0* — e O ¢* + €Tyt O 9) .

The sum of the two variations is a total derivative so the action is in-
variant:

05 =0



Remark: in the manipulations we needed the Pauli identities:

ohT —1—0’/3“]2 = 2pHvHP
[E“a’/ —|—5VO'“]§ = 2n“”5§

These are the two component versions of the Dirac algebra

7y =20



SUSY Commutators

Consistency: the commutator of two SUSY transformations must itself
be a symmetry transformation. We need to show that it is in fact a
translation, as the SUSY algebra indicates.

The commutator, acting on the complex scalar:

(8,0, — 0c,0c,)p = —i(er0tel — exotiel) 0

The commutator, acting on the fermion:

(8,0, — 0,0 )00 = —i(0”€))a 620,,¢+ (07 €h)a 10,1
= —2(610”65—620 e u¢a

+i(€10 620' RO, — €20 610 HOu).
(Reorganized using the Fierz identity: x (£17) = —&o (xn) — (€X)Na )

The last term vanishes upon imposing the fermion equation of motion.
With this caveat, the commutator is a translation, with details the same
for the two fields. Thus the SUSY algebra closes on-shell.



Counting Degrees of Freedom

The fermion e.o.m. projects out half of the degrees of freedom:

Eup/ﬂp:(g 2(;><zl> ) pu:<p70707p)

Counting degrees of freedom shows that SUSY is not manifest off-shell:

off-shell on-shell
o,0* 2 d.o.f. 2 d.o.f.

Ve, wl 4 d.o.f. 2 d.o.f.
Restore SUSY off-shell: add an auxiliary boson field F with Lagrangian
£aux =F*F

Recount degrees of freedom

off-shell on-shell
F,F* 2 d.o.f. 0 d.o.f.



Maintain SUSY off-shell: transform the auxiliary field, and modify the
transformation of the fermion

§F = —ielardp, OF* =i0,hiote
o = —i(0Ve)adudteaF , Sl = Fileo)s " + L F

Transformation of the Lagrangian:

Loy = 0015t e F —ielgh, g F*
VL = §MLp +ielTHO VT + iT5 D, (eF)
= ML + i 5O F* —i(0,hT)oHeF + 0, (i) THeF)

The last term is a total derivative so the action
SNew — f d*x Ltree = f d*x (,CS + L¢ + ,Caux)
is invariant under SUSY transformations:

55mY = 0



Off-shell SUSY commutator

The previous computation, without using e.o.m.

(0ex0e; — ey 0ey )0 = —7,(610“6; — €20 61) uwa

+i(€e1q 620' RO — €24 610 HOu)

+0e, €10 F — 5€1€2af
— —2(610'“65 — €50 61) Oua

The point: the additional term in the SUSY transformation of the
fermion, the depending on the auxiliary field, is precisely such that the
last two lines cancel.

Conclusion: the SUSY algebra closes for off-shell fermions.



Off-shell SUSY commutator 11

Issue: the commutator of SUSY transformations must also close when
acting on the auxiliary field.

Computation:
(562 561 o 561 562)‘F — 562 <_ieiaﬂaﬂw) o 561 (—ie%ﬁ”@uw)
= —il5"0,(—ioVel D, p + 2 F)
+iedard, (—iovel O,¢ + € F)
= —i(eyotel — exotel) D, F
—elotovel 0,0, + elatovel 0,0,¢
= —i(erotel — egotel) 9, F
Conclusion: the SUSY algebra closes
(8ey0c, — 0c,00,) X = —i(er0tel — exotiel) 0, X
for all the fields in the off-shell supermultiplet

X =¢,0% 0,1, F,F*



Noether’s Theorem

Noether’s theorem: corresponding to every continuous symmetry, there
is a conserved current.

An infinitesimal transformation X — X + 0 X of the field X that leaves
the action invariant, transforms the Lagrangian to a total derivative:

OL=L(X+0X)—-L(X)=0,V*
Identification of conserved current:
Vi =0L = 2L5X + (5%e) 8(0,X)
= 3 (st

= 0 = 0, (55550X — V*) =0

Ingredient: the equation of motion

oL |\ _ oc
Oy (8(8MX)) — 09X



The Supercurrent

The conserved supercurrent, JE£:

eJt +el T = 555 0X —VH
SPOH@* + 6p* O p + ipTaH o) — VH
ePpOHd* + el PToF ¢ + ipToH (—ioY el 0,¢ + €F)
—eoPTYY) 0,0* + er) OFp* — el Ot — i) ToHeF
2eOMp* — eatTV Y 0,¢* + YtV el O, ¢
ea?at 0,¢* + YTohove 0,¢

Results for the supercurrents:

T = (0v")a 0,0, T = (V15" 0")s 0,0,



The Supercharges

The Noether charge generate the transformations of the corresponding
symmetry (see e.g. PS 9.97 for signs and normalization).

The conserved supercharges:

Qo =V2[dxzJ), QL =v2[dzJ
generate SUSY transformations when acting on any (string of) fields:

[GQ + €7QT, X] = —iv/26X

Commutators of the supercharges acting on fields give:

ea() + EEQT, [elQ + EIQT, XH — {elQ -+ GIQT, [GQQ + e;QT, XH
= 2(0e,0e, — 0e,0e,) X = 2(620'“61 — 610"“’65) 10, X



Reorganize (using the Jacobi identity) and identify ¢0, = P,
[[EQQ + EEQT, e1Q + EIQT}, X] — 2(620“61 — €10 62) P, X]

This is an operator equation, since X is arbitrary
[GQQ + EEQT, €10 + GIQT] — 2(620“61 — 610“6;) P,
Since €1 and ey are arbitrary:

[EQQ,EJ{QT} = QEQO"MEJ{PM
©Q,aQ] = [4Q1.QT] =

Extracting the arbitrary e¢; and es:

{Qu,QL} = 25" . P,
{Qom Qﬁ} — {Qaa Qﬁ} =0

This is precisely the SUSY algebra, which is thus realized by the free
WZ-model.



The interacting Wess—Zumino model

So far, we considered the free Wess-Zumino model for a single chiral field.

Lagrangian for multicomponent generalization
Liree = 3“¢*jc9ucbj + iwwﬁ“’ﬁﬂwj + FF;
Offshell SUSY transformations for multicomponent model
0pj = ep;  0¢™ = €lyly

5¢ja — _i(U’UJGT)a 0,,@59 + Eafj 5¢:;J = 7;(60'“)@ 8,u¢*‘7 + GLF*J
0F; = —ie ot 1, 6F* = id,1oHe

Next: introduce interactions, while preserving SUSY.

Guiding principle: the off-shell SUSY transformations are independent
of interactions.

Interpretation: the SUSY transformations is the realization of the al-
gebra (the same for all interactions), while the interactions specify the
e.o.m.’s (not needed at the level of off-shell algebra).



The most general set of renormalizable interactions:
Lint = —s Wby, + WIF; + hec.,
with W;y linear in ¢;, ¢; and W7 quadratic in ¢;, ¢7.

Recall: 19, = wjo-‘eagw,f is symmetric under j < k. So W7* is symmet-
ric under j < k (without loss of generality).

Remark: a potential U(¢;, $*7) would break SUSY, since a SUSY trans-
formation gives

oU = 6% + a(p*z U_eTopli

which is linear in v¢; and )V with no derivatives or F dependence. Such
terms cannot be canceled by any other term in 0. ;..



SUSY Conditions

First focus on variations of L;,; with four spinors:

5£int|4—spinor — _% 85;;1 (Ewn)(¢j¢k) — %%‘gfn (ET@DTn)(ijk) + h.c.

The vanishing of the second term requires that W7* is analytic (a.k.a.
holomorphic):

OWik
8¢*n - O

The Fierz identity
(ij)(wk?bn) + (6%)(%%) + (€¢n)(¢j¢k) =0

so the first term vanishes exactly when OW7* /9¢,, is totally symmetric
under the interchange of 7, k, n.

This condition amounts to the existence of a superpotential W such that:

jk _ _ 0?
W _afbjaCka




Next, the terms in the SUSY variation with derivatives of the fields:

0Lintle = —iWik9 LDk ?bjOMET — W79 w-a“eT + h.c.

= —i0, 8%) %0“5 — W19 LW otel + h.c.

This term is a total derivative exactly if

j — oW
W_8¢j

All the remaining terms in the SUSY variation depend on the auxiliary

field:
0Lint| 7,7 = —WIFFiep, + E%Dkf
These cancel automatically, if the previous Condltlons are satisfied.

Summary: the interaction term
2
Lint — —%ggbfg %% —+ g f + h.c.

transforms into a total derivative, for any holomorphic superpotential

W.



Remark on Renormalizability

The original ansatz for L, was motivated by renormalizability:.

Yet, the computation establishing SUSY did not rely on the functional
form of W (other than it must be holomorphic).

For renormalizable interactions
W(p) = E'¢i + 5 MY i + 5y7* diidn
where M%, y“* are are symmetric under interchange of indices.

Often we additionally take E* = 0 so SUSY is unbroken in the minimum
bi = 0.



Integrate out auxillary fields

The action is quadratic in the auxiliary field F and there are no deriva-
tives:

Lr=F;F9+WIiF;+W:rF*

The path integral can be performed exactly, by solving its algebraic
equation of motion:

Fi=-Wr, F9=_W

J

Insert in L:

L = au¢*j3/+¢j + WUEM(?M%'. |
— L Wk + WHIkgpligth) — Wi

Remark: the off-shell SUSY transformation of the fermions 1; depended
on the auxiliary fields F; so, after these are integrated out, it depends
on the choice of superpotential W.



WZ Lagrangian

The interacting Wess—Zumino model (with renormalizable superpoten-
tial):

Lwzg = 0" 0u¢; +ipVTH0up; — 5 M by — 5 M T
— 3 ik — 5Yf, @O =V (9, ¢*)

The scalar potential:

V(p,¢*) = WIW} = F f*f = Mg Mk i g,
+5MI™ Yo O yPrm ST b, + LyTF My bR P



Features:

e The scalar potential
Vg, d*) = F;F* >0

as required by SUSY.

e The quartic coupling is |y|?, as required to cancel the A? divergence
in the ¢-mass.

e The |cubic coupling|* o quartic coupling x|M|? as required to
cancel the log A divergence.



Linearized equations of motion

Equations of motion, keeping just the quadratic term in the superpoten-
tial:

8“8Mq5j = —M;nMnk¢k + ...
’L'E’ua'u?,bj — M;k??DTk + ...
it Ot = MR 1

Multiplying fermion equations by ic”0, and ig”0,, and using the Pauli
identity, we obtain

MO, = =M M ™+

n

auauwk — —wTjM;nM”’“ N

Conclusion: scalars and fermions have the same mass eigenvalues, as
required by SUSY.

Diagonalizing the mass matrix gives a collection of massive chiral super-
multiplets.



